- 1. VOCABULARY Copy and complete: The graph of a quadratic function is called a(n) <u>?</u>.
- 2. **★ WRITING** *Describe* how to determine whether a quadratic function has a minimum value or a maximum value.

USING A TABLE Copy and complete the table of values for the function.

on p. 236	3. $y = 4x^2$	complete the table of	4. $v = -3x^2$		
: 101 EXS. 3-12			n y on		
	x -2 -1	0 1 2	x -2 -1	0 1 2	
	y ? ?	? ? ?	y ? ?	? ? ? ? ?	
	5. $y = \frac{1}{2}x^2$		6. $y = -\frac{1}{3}x^2$		
	x -4 -2	0 2 4	x -6 -3	0 3 6	
	y ? ?	??????????????????????????????????????	y ? ?	5 5 5	
	MAKING A GRAPH Graph the function. <i>Compare</i> the graph with the graph of $y = x^2$.				
	7. $y = 3x^2$	8. $y = 5x^2$	9. <i>y</i> =	$-2x^{2}$	
	10. $y = -x^2$	11. $f(x) = \frac{1}{3}x^2$	12. $g(x) = -\frac{1}{4}x^2$		
EXAMPLE 2 on p. 237 for Exs. 13–18	13. $y = 5x^2 + 1$	14. $y = 4x^2 + 1$	1 (15. $f(x) = -x^2 + 2$		
	16. $g(x) = -2x^2 - 5$	17. $f(x) = \frac{3}{4}x^2$	$=\frac{3}{4}x^2-5$ 18. $g(x)=-\frac{1}{5}x^2-2$		
	ERROR ANALYSIS Describe and correct the error in analyzing the graph of $y = 4x^2 + 24x - 7$.				
	19.	he vertex is.	20. The v-intercent of t	he	
	he 24 a		graph is the value o	fc,	
	$x = \frac{1}{2a} = \frac{1}{2(4)} = 3$	X	which is 7.	X	
EXAMPLE 3 on p. 238 for Exs. 21–32	MAKING A GRAPH Graph the function. Label the vertex and axis of symmetry.				
	21. $y = x^2 + 2x + 1$	22. $y = 3x^2 - 6$.	x + 4 23. $y = -$	$-4x^2 + 8x + 2$	
	24. $y = -2x^2 - 6x + 3$	25. $g(x) = -x^2$	-2x-1 26. $f(x) =$	$= -6x^2 - 4x - 5$	
	27. $y = \frac{2}{3}x^2 - 3x + 6$	28. $y = -\frac{3}{4}x^2 - $	4x - 1 29. $g(x) =$	$=-\frac{3}{5}x^2+2x+2$	
	30. $f(x) = \frac{1}{2}x^2 + x - 3$	31. $y = \frac{8}{5}x^2 - 4$	x + 5 32. $y = -$	$-\frac{5}{3}x^2 - x - 4$	

EXAMPLE 1

MINIMUMS OR MAXIMUMS Tell whether the function has a *minimum value* or a MINIMUMS on the find the minimum or maximum value. maximum value 1 34 where T**33.** $y = -6x^2 - 1$ **35.** $f(x) = 2x^2 + 8x + 7$ **33.** $y = -3x^2 + 18x - 5$ **35.** $f(x) = 2x^2 + 8x + 7$ **36.** $g(x) = -3x^2 + 18x - 5$ **37.** $f(x) = \frac{3}{2}x^2 + 6x + 4$ **38.** $y = -\frac{1}{4}x^2 - 7x + 2$ **39. MULTIPLE CHOICE** What is the effect on the graph of the function $x^2 + 2$ when it is changed to $y = x^2 - 3$? **MULT** Multi schanged to $y = x^2 - 3$? (A) The graph widens. B The graph narrows. C The graph opens down. D The vertex moves down the y-axis. 40. *** MULTIPLE CHOICE** Which function has the widest graph? (A) $y = 2x^2$ (B) $\gamma = x^2$ (c) $y = 0.5x^2$ (b) $y = -x^2$ IDENTIFYING COEFFICIENTS In Exercises 41 and 42, identify the values of a, b, and c for the quadratic function.

41. The path of a basketball thrown at an angle of 45° can be modeled by $y = -0.02x^2 + x + 6$.

42. The path of a shot put released at an angle of 35° can be modeled by $y = -0.01x^2 + 0.7x + 6$.

43. ★ OPEN-ENDED MATH Write three different quadratic functions whose graphs have the line x = 4 as an axis of symmetry but have different *y*-intercepts.

MATCHING In Exercises 44–46, match the equation with its graph.

MAKING A GRAPH Graph the function. Label the vertex and axis of symmetry.

47. $f(x) = 0.1x^2 + 2$ 48. $g(x) = -0.5x^2 - 5$ 49. $y = 0.3x^2 + 3x - 1$ 50. $y = 0.25x^2 - 1.5x + 3$ 51. $f(x) = 4.2x^2 + 6x - 1$ 52. $g(x) = 1.75x^2 - 2.5$

53. ★ SHORT RESPONSE The points (2, 3) and (-4, 3) lie on the graph of a quadratic function. *Explain* how these points can be used to find an equation of the axis of symmetry. Then write an equation of the axis of symmetry.

54. CHALLENGE For the graph of $y = ax^2 + bx + c$, show that the *y*-coordinate of the vertex is $-\frac{b^2}{4a} + c$.

10 7 10 13

PROBLEM SOLVING

EXAMPLE 5 on p. 239 for Exs. 55–58 **55. ONLINE MUSIC** An online music store sells about 4000 songs each day when it charges \$1 per song. For each \$.05 increase in price, about 80 fewer songs per day are sold. Use the verbal model and quadratic function to find how the store can maximize daily revenue.

56. DIGITAL CAMERAS An electronics store sells about 70 of a new model of digital camera per month at a price of \$320 each. For each \$20 decrease in price, about 5 more cameras per month are sold. Write a function that models the situation. Then tell how the store can maximize monthly revenue from sales of the camera.

@HomeTutor for problem solving help at classzone.com

a cable at its lowest point?

57. GOLDEN GATE BRIDGE Each cable joining the two towers on the Golden Gate Bridge can be modeled by the function

$$y = \frac{1}{9000}x^2 - \frac{7}{15}x + 500$$

where x and y are measured in feet. What is the height h above the road of

- **58. ★ SHORT RESPONSE** A woodland jumping mouse hops along a parabolic path given by $y = -0.2x^2 + 1.3x$ where x is the mouse's horizontal position (in feet) and y is the corresponding height (in feet). Can the mouse jump over a fence that is 3 feet high? *Explain*.
- 59. MULTIPLE REPRESENTATIONS A community theater sells about 150 tickets to a play each week when it charges \$20 per ticket. For each \$1 decrease in price, about 10 more tickets per week are sold. The theater has fixed expenses of \$1500 per week.
 - **a.** Writing a Model Write a verbal model and a quadratic function to represent the theater's weekly profit.
 - b. Making a Table Make a table of values for the quadratic function.
 - **c. Drawing a Graph** Use the table to graph the quadratic function. Then use the graph to find how the theater can maximize weekly profit.

60. ★ EXTENDED RESPONSE In 1971, astronaut Alan Shepard hit a golf ball on the moon. The path of a golf ball hit at an angle of 45° and with a speed of 100 feet per second can be modeled by

$$y = -\frac{g}{10,000}x^2 + x$$

where x is the ball's horizontal position (in feet), y is the corresponding height (in feet), and g is the acceleration due to gravity (in feet per second squared).

a. Model Use the information in the diagram to write functions for the paths of a golf ball hit on Earth and a golf ball hit on the moon.

- **b. Graphing Calculator** Graph the functions from part (a) on a graphing calculator. How far does the golf ball travel on Earth? on the moon?
- **c. Interpret** *Compare* the distances traveled by a golf ball on Earth and on the moon. Your answer should include the following:
 - a calculation of the ratio of the distances traveled
 - a discussion of how the distances and values of g are related
- **61. CHALLENGE** Lifeguards at a beach want to rope off a rectangular swimming section. They have *P* feet of rope with buoys. In terms of *P*, what is the maximum area that the swimming section can have?

TEST PRACTICE at classzone.com

MISSOURI MIXED REVIEW

62. Liz's high score in a video game is 1200 points less than three times her friend's high score. Let *x* represent her friend's high score. Which expression can be used to determine Liz's high score?

(A) 1200 - 3x (B) $\frac{x - 1200}{3}$ (C) $\frac{x}{3} - 1200$ (D) 3x - 1200

- **63.** The total cost, *c*, of a school banquet is given by c = 25n + 1400, where *n* is the total number of students attending the banquet. The total cost of the banquet was \$9900. How many students attended the banquet?
 - **(A)** 177 **(B)** 340 **(C)** 396 **(D)** 452

ONLINE QUIZ at classzone.com

GRAPHING CALCULATOR In part (b), use the calculator's zero feature to answer the questions.

243